# Class X <br> Mathematics <br> Sample Question Paper 2018-19 

## Time allowed: 3 Hours

## General Instructions:

1. All the questions are compulsory.
2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

| Section-A |  |  |
| :---: | :---: | :---: |
| 1. | Find the value of a, for which point $\mathrm{P}\left(\frac{\mathrm{a}}{3}, 2\right)$ is the mid-point of the line segment joining the points $\mathrm{Q}(-5,4)$ and $\mathrm{R}(-1,0)$. | 1 |
| 2. | Find the value of k , for which one root of the quadratic equation $\mathrm{kx}^{2}-14 \mathrm{x}+8=0$ is 2 . | 1 |
|  | OR |  |
|  | Find the value(s) of k for which the equation $x^{2}+5 k x+16=0$ has real and equal roots. |  |
| 3. | Write the value of $\cot ^{2} \theta-\frac{1}{\sin ^{2} \theta}$ | 1 |
|  | OR |  |
|  | If $\sin \theta=\cos \theta$, then find the value of $2 \tan \theta+\cos ^{2} \theta$ |  |
| 4. | If nth term of an A.P. is ( $2 \mathrm{n}+1$ ), what is the sum of its first three terms? | 1 |
| 5. | In figure if $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{EC}=12 \mathrm{~cm}$ and $\angle \mathrm{ADE}=48^{\circ}$. Find $\angle \mathrm{ABC}$ | 1 |
| 6. | After how many decimal places will the decimal expansion of $\frac{23}{2^{4} \times 5^{3}}$ terminate? | 1 |

## Section-B

| Section-B |  |  |
| :---: | :---: | :---: |
| 7. | The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45 , find the other number. | 2 |
|  | OR |  |
|  | Show that $7-\sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational. |  |
| 8. | Find the $20^{\text {th }}$ term from the last term of the AP 3,8,13, $\ldots, 253$ | 2 |
|  | OR |  |
|  | If 7 times the $7^{\text {th }}$ term of an A.P is equal to 11 times its $11^{\text {th }}$ term, then find its $18^{\text {th }}$ term. |  |
| 9. | Find the coordinates of the point P which divides the join of $\mathrm{A}(-2,5)$ and $\mathrm{B}(3,-5)$ in the ratio 2:3 | 2 |
| 10. | A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen. | 2 |
| 11. | Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number | 2 |
| 12. | For what value of p will the following pair of linear equations have infinitely many solutions $\begin{aligned} & (p-3) x+3 y=p \\ & p x+p y=12 \end{aligned}$ | 2 |
| Section-C |  |  |
| 13. | Use Euclid's Division Algorithm to find the HCF of 726 and 275. | 3 |
| 14. | Find the zeroes of the following polynomial: $5 \sqrt{5} x^{2}+30 x+8 \sqrt{5}$ | 3 |
| 15. | Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars. | 3 |
| 16. | The points $\mathrm{A}(1,-2), \mathrm{B}(2,3), \mathrm{C}(\mathrm{k}, 2)$ and $\mathrm{D}(-4,-3)$ are the vertices of a parallelogram. Find the value of $k$. | 3 |
|  | OR |  |
|  | Find the value of k for which the points (3k-1,k-2), (k,k-7) and (k-1,-k-2) are collinear. |  |
| 17. | Prove that $\boldsymbol{\operatorname { c o t } \boldsymbol { \theta }}-\boldsymbol{\operatorname { t a n } \theta}=\frac{2 \cos ^{2} \theta-1}{\sin \theta \boldsymbol{\operatorname { c o s } \theta}}$ | 3 |
|  | OR |  |
|  | Prove that $\sin \theta(1+\boldsymbol{t a n} \theta)+\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}(1+\cot \theta)=\boldsymbol{\operatorname { s e c }} \theta+\boldsymbol{\operatorname { c o s e c }} \theta$ |  |
| 18. | The radii of two concentric circles are 13 cm and 8 cm . AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP. | 3 |

19. In figure $\angle 1=\angle 2$ and $\Delta \mathrm{NSQ} \cong \Delta \mathrm{MTR}$, then prove that $\Delta \mathrm{PTS} \sim \Delta \mathrm{PRQ}$.


## OR

In $\triangle A B C$, if $A D$ is the median, then show that $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$

20. Find the area of the minor segment of a circle of radius 42 cm , if length of the corresponding 3 arc is 44 cm .
21. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm .

## OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6 cm . Find the number of balls.
22. The table shows the daily expenditure on grocery of 25 households in a locality. Find the modal daily expenditure on grocery by a suitable method.

| Daily <br> Expenditure <br> (in Rs.) | $100-150$ | $150-200$ | $200-250$ | $250-300$ | $300-350$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No of <br> households | 4 | 5 | 12 | 2 | 2 |

## Section-D



|  |  | OR |  |
| :---: | :---: | :---: | :---: |
|  | The following data indicates the | students in Mathem |  |
|  | Marks | Number of students |  |
|  | 0-10 | 5 |  |
|  | 10-20 | 3 |  |
|  | 20-30 | 4 |  |
|  | 30-40 | 3 |  |
|  | 40-50 | 4 |  |
|  | 50-60 | 4 |  |
|  | 60-70 | 7 |  |
|  | 70-80 | 9 |  |
|  | 80-90 | 7 |  |
|  | 90-100 | 8 |  |
|  | Draw less than type ogive for | and hence find the medis |  |
| 29. | The radii of circular ends of a its curved surface. | ht 24 cm are 15 cm an | 4 |
| 30. | If $\sec \theta+\tan \theta=p$, then find | sect . | 4 |

Class: X
Mathematics
Marking Scheme 2018-19
Time allowed: 3hrs
Maximum Marks: 80

| Q No | SECTION A | Marks |
| :---: | :---: | :---: |
| 1 | $\begin{aligned} & \left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right)=\left(\frac{a}{3}, 2\right) \\ & \frac{a}{3}=\frac{-6}{2} \Rightarrow a=-9 \end{aligned} \Rightarrow$ | 1 |
| 2 | $\begin{aligned} & 4 \mathrm{~K}-28+8=0 \\ & \mathrm{~K}=5 \end{aligned}$ | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ |
|  | OR <br> For roots to be real and equal, $b^{2}-4 a c=0$ $\begin{aligned} & \Rightarrow(5 k)^{2}-4 \times 1 \times 16=0 \\ & \quad k= \pm \frac{8}{5} \end{aligned}$ |  |
| 3 | $\begin{aligned} \cot ^{2} \theta-\frac{1}{\sin ^{2} \theta} & =\cot ^{2} \theta-\operatorname{cosec}^{2} \theta \\ & =-1 \end{aligned}$ | $\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$ |
|  | OR |  |
|  | $\begin{array}{r} \sin \theta=\cos \theta \quad \theta=45^{\circ} \\ \therefore 2 \tan \theta+\cos ^{2} \theta=2+\frac{1}{2}=\frac{5}{2} \end{array}$ |  |
| 4 | $\begin{gathered} a_{1}=3, a_{3}=7 \\ s_{3}=\frac{3}{2}(3+7)=15 \end{gathered}$ | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ |
| 5 | $\begin{aligned} & \frac{\mathbf{A D}}{\mathbf{D B}}=\frac{\mathbf{A E}}{\mathbf{E C}} \quad D E \\| B C \\ \Rightarrow & \angle \mathrm{ADE}=\angle \mathrm{ABC}=48^{\circ} \end{aligned}$ | $1 / 2$ $1 / 2$ |
| 6 | 4 places | 1 |
|  | SECTION B |  |
| 7 | $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers $9 \times 360=45 \times 2^{\text {nd }}$ number $2^{\text {nd }}$ number $=72$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
|  | OR |  |


|  | Let us assume, to the contrary that $7-\sqrt{5}$ is irrational $7-\sqrt{5}=\frac{p}{q}$, Where $\mathrm{p} \& \mathrm{q}$ are co-prime and $\mathrm{q} \neq 0$ $=\sqrt{5}=\frac{7 q-p}{q}$ <br> $\frac{7 q-p}{q}$ is rational $=\sqrt{5}$ is rational which is a contradiction Hence $7-\sqrt{5}$ is irrational |  |
| :---: | :---: | :---: |
| 8 | $\begin{aligned} & 20^{\text {th }} \text { term from the end }=l-(n-1) d \\ & =253-19 \times 5 \\ & =158 \end{aligned}$ | $\begin{gathered} 1 / 2 \\ 1 \\ 1 / 2 \end{gathered}$ |
|  | $\begin{gathered} 7 a_{7}=11 a_{11} \Rightarrow 7(a+6 d)=11(a+10 d) \\ \Rightarrow a+17 d=0 \quad \therefore a_{18}=0 \end{gathered}$ | 1 <br> 1 |
| 9 | $\begin{aligned} & X=\frac{6-6}{5}=0 \\ & Y=\frac{-10+15}{5}=1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 10 | Probability of either a red card or a queen $=\frac{26+2}{52}=\frac{28}{52}$ $\begin{aligned} & \mathrm{P}(\text { neither red car nor a queen })= 1-\frac{28}{52} \\ &=\frac{24}{52} \text { or } \frac{7}{13} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 11 | Total number of outcomes $=36$ <br> Favourable outcomes are (1,2), (2,1), (1,3), (3,1), (1,5), (5,1) i.e. 6 Required probability $=\frac{6}{36}$ or $\frac{1}{6}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| 12 | For infinitely many solutions $$ | $\begin{gathered} 1 / 2 \\ 1 \end{gathered}$ |
|  | SECTION: C |  |
| 13 | By Euclid's Division lemma $\begin{aligned} & 726=275 \times 2+176 \\ & 275=176 \times 1+99 \\ & 176=99 \times 1+77 \\ & 99=77 \times 1+22 \\ & 77=22 \times 3+11 \\ & 22=11 \times 2+0 \\ & H C F=11 \end{aligned}$ | $\begin{gathered} 6 \times \\ 1 / 2= \end{gathered}$ |


| 14 | $\begin{aligned} & 5 \sqrt{5} x^{2}+30 x+8 \sqrt{5} \\ & =5 \sqrt{5} x^{2}+20 x+10 x+8 \sqrt{5} \\ & =5 x(\sqrt{5} x+4)+2 \sqrt{5}(\sqrt{5} x+4) \\ & =(\sqrt{5} x+4)(5 x+2 \sqrt{5}) \end{aligned}$ <br> Zeroes are $\frac{-4}{\sqrt{5}}=\frac{-4 \sqrt{5}}{5}$ and $\frac{-2 \sqrt{5}}{5}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| :---: | :---: | :---: |
| 15 | Let the speed of car at A be $x \mathrm{~km} / \mathrm{h}$ <br> And the speed of car at B be $y \mathrm{~km} / \mathrm{h}$ <br> Case 1 <br> Case 2 $\begin{gathered} 8 x-8 y=80 \\ x-y=10 \\ \frac{4}{3} x+\frac{4}{3} y=80 \\ x+y=60 \end{gathered}$ <br> on solving $\mathrm{x}=35$ and $\mathrm{y}=25$ <br> Hence, speed of cars at A and B are $35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{h}$ respectively. | $1$ <br> 1 <br> 1 |
| 16 | Diagonals of parallelogram bisect each other <br> $\Rightarrow$ midpoint of $\mathrm{AC}=$ midpoint of BD $\begin{array}{ll} \Rightarrow & \left(\frac{1+\mathrm{k}}{2}, \frac{-2+2}{2}\right)=\left(\frac{-4+2}{2}, \frac{-3+3}{2}\right) \\ \Rightarrow & \frac{1+\mathrm{k}}{2}=\frac{-2}{2} \\ \Rightarrow & \mathrm{k}=-3 \end{array}$ <br> OR <br> For collinearity of the points, area of the triangle formed by given Points is zero. | $1 / 2$ <br> $1 / 2$ <br> 1 <br> 1 <br> 1 <br> 1 |
| 17 | $\begin{aligned} \text { LHS } & =\cot \theta-\tan \theta \\ & =\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \\ & =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin \theta \cos \theta^{2}} \\ & =\frac{\cos ^{2} \theta-1+\cos ^{2} \theta}{\sin \theta \cos \theta} \\ & =\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta}=\text { RHS } \end{aligned}$ <br> OR | $\begin{gathered} 1 \\ 1 / 2 \\ 1 \\ 1 / 2 \end{gathered}$ |


|  | $\begin{aligned} \text { LHS } & =\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta) \\ & =\sin \theta\left(1+\frac{\sin \theta}{\cos \theta}\right)+\cos \theta\left(1+\frac{\cos \theta}{\sin \theta}\right) \\ & =\sin \theta\left(\frac{\cos \theta+\sin \theta}{\cos \theta}\right)+\cos \theta\left(\frac{\sin \theta+\cos \theta}{\sin \theta}\right) \\ & =(\cos \theta+\sin \theta)\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right) \\ & =\frac{\cos \theta+\sin \theta}{\cos \theta \sin \theta}=\operatorname{cosec} \theta+\sec \theta=\text { RHS } \end{aligned}$ | 1 <br> 1 <br> 1 |
| :---: | :---: | :---: |
|  | SECTION: E |  |
| 18 | $\begin{aligned} & \angle \mathrm{APB}=90^{\circ} \text { (angle in semi-circle) } \\ & \angle \mathrm{ODB}=90^{\circ} \text { (radius is perpendicular to tangent) } \\ & \quad \triangle A B P \sim \triangle O B D \\ & \Rightarrow \frac{\mathrm{AB}}{\mathrm{OB}}=\frac{\mathrm{AP}}{\mathrm{OD}} \\ & \Rightarrow \frac{26}{13}=\frac{\mathrm{AP}}{8} \\ & \Rightarrow \mathrm{AP}=16 \mathrm{~cm} \end{aligned}$ | 1 $1 / 2$ <br> 1 |
| 19 | $\begin{array}{cc} \angle 1 & =\angle 2 \\ \Rightarrow & \mathrm{PT}=\mathrm{PS} \tag{i} \end{array}$ $\qquad$ $\begin{align*} & \Delta \mathrm{NSQ} \cong \Delta \mathrm{MTR} \\ \Rightarrow & \angle \mathrm{NQS}=\angle \mathrm{MRT} \\ \Rightarrow & \angle \mathrm{PQR}=\angle \mathrm{PRQ} \\ \Rightarrow & \mathrm{PR}=\mathrm{PQ} \ldots \ldots \ldots . \tag{ii} \end{align*}$ <br> From (i) and (ii) $\begin{array}{ll} \text { Id (ii) } & \frac{\mathrm{PT}}{\mathrm{PR}}=\frac{\mathrm{PS}}{\mathrm{PQ}} \\ \text { Also, } & \\ & \angle \mathrm{TPS}=\angle \mathrm{RPQ} \text { (common) } \\ & \Rightarrow \\ \Delta \mathrm{PTS} \sim \triangle \mathrm{PRQ} \end{array}$ | 1 <br> 1 <br> 1 |
|  | OR |  |

\begin{tabular}{|c|c|c|}
\hline \& Adding both,
$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{AC}^{2} & =2 \mathrm{AE}^{2}+\mathrm{BE}^{2}+\mathrm{CE}^{2} \\
& =2\left(\mathrm{AD}^{2}-\mathrm{ED}^{2}\right)+(\mathrm{BD}-\mathrm{ED})^{2}+(\mathrm{DC}+\mathrm{ED})^{2} \\
& =2 \mathrm{AD}^{2}-2 \mathrm{ED}^{2}+\mathrm{BD}^{2}+\mathrm{ED} D^{2}-2 \mathrm{BD} \cdot \mathrm{ED}+\mathrm{DC}^{2}+\mathrm{ED}^{2}+2 \mathrm{CD} \cdot \mathrm{ED} \\
& =2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{CD}^{2} \\
& =2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)
\end{aligned}
$$ \& 1

1 <br>

\hline 20 \& | $\begin{aligned} & \mathrm{r}=42 \mathrm{~cm} \\ & \frac{2 \pi \mathrm{r} \theta}{360^{\circ}}=44 \\ & \quad \theta=\frac{44 \times 360 \times 7}{2 \times 22 \times 42}=60^{\circ} \end{aligned}$ |
| :--- |
| Area of minor segment $=$ area of sector - area of corresponding triangle $\begin{gathered} =\frac{\pi r^{2} \theta}{360^{\circ}}-\frac{\sqrt{3}}{4} \mathrm{r}^{2} \\ =\mathrm{r}^{2}\left[\frac{22}{7} \times \frac{60}{360}-\frac{\sqrt{3}}{4}\right] \\ \quad=42 \times 42\left[\frac{11}{21}-\frac{\sqrt{3}}{4}\right] \\ =42 \times 42 \times\left[\frac{44-21 \sqrt{3}}{84}\right] \\ = \\ =21(44-21 \sqrt{3}) \mathrm{cm}^{2} \end{gathered}$ | \& 1

$$
1 / 2
$$

$$
1 / 2
$$ <br>

\hline 21 \& | Volume of water flowing through pipe in 1 hour $\begin{aligned} & =\frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100} \\ & =231 \mathrm{~m}^{3} \end{aligned}$ $\begin{aligned} \text { Volume of rectangular tank }=50 & \times 44 \times \frac{21}{100} \\ = & 22 \times 21 \mathrm{~m}^{3} \end{aligned}$ |
| :--- |
| Time taken to flow $231 \mathrm{~m}^{3}$ of water $=1$ hours |
| $\therefore$ Time taken to flow $22 \times 21 \mathrm{~m}^{3}$ of water $=\frac{1}{231} \times 22 \times 21=2$ hours |
| OR $\begin{aligned} & \text { Number of balls }=\frac{\text { Volume of solid sphere }}{\text { Volume of } 1 \text { spherical ball }} \\ & \begin{array}{c} =\frac{\frac{4}{3} \times \pi \times 3 \times 3 \times 3}{\frac{4}{3} \times \pi \times 0.3 \times 0.3 \times 0.3} \\ =1000 \end{array} \end{aligned}$ | \& 1

1
1
1
1
1
1
1 <br>
\hline
\end{tabular}

| 22 | 200-250 is the modal class $\begin{aligned} \text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\ & =200+\frac{12-5}{24-5-2} \times 50 \\ & =200+20.59=\text { Rs. } 220.59 \end{aligned}$ | $\begin{gathered} \hline 1 \\ 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$ |
| :---: | :---: | :---: |
|  | Section D |  |
| 23 | Let the usual speed of the train be $\mathrm{xkm} / \mathrm{h}$ $\begin{aligned} & \frac{300}{\mathrm{x}}-\frac{300}{\mathrm{x}+5}=2 \\ \Rightarrow & \mathrm{x}^{2}+5 \mathrm{x}-750=0 \\ \Rightarrow & (\mathrm{x}+30)(\mathrm{x}-25)=0 \\ \Rightarrow & \mathrm{x}=-30,25 \end{aligned}$ <br> $\therefore$ Usual Speed of the train $=25 \mathrm{~km} / \mathrm{h}$ <br> OR $\begin{aligned} \frac{1}{(a+b+x)}-\frac{1}{x}= & \frac{1}{a}+\frac{1}{b} \\ & \Rightarrow \\ & \frac{x-a-b-x}{x(a+b+x)}=\frac{b+a}{a b} \\ & \Rightarrow-a b=x^{2}+(a+b) x \\ & \Rightarrow x^{2}+a x+b x+a b=0 \\ & \Rightarrow(x+a)(x+b)=0 \\ & \Rightarrow \quad x=-a,-b \end{aligned}$ | $2$ <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 |
| 24 | $\left.\begin{array}{rl} \mathrm{n}=50, \mathrm{a}_{3}= & 12 \text { and } \mathrm{a}_{50}=106 \\ & \mathrm{a}+2 \mathrm{~d}=12 \\ \mathrm{a}+49 \mathrm{~d}=106 \end{array}\right\}$ <br> on solving, $\mathrm{d}=2$ and $\mathrm{a}=8$ $\begin{aligned} \mathrm{a}_{29} & =\mathrm{a}+28 \mathrm{~d} \\ & =8+28 \times 2=64 \end{aligned}$ | $\begin{gathered} 1 / 2 \\ 1 \\ 1 \\ 1 / 2 \\ 1 \end{gathered}$ |
| 25 | Correct given, To prove, figure and construction <br> Correct proof | $\begin{gathered} 1 / 2 \\ \times 4 \\ =2 \\ 2 \end{gathered}$ |
| 26 | Correct construction of $\triangle \mathrm{ABC}$ Correct construction of similar triangle | $\begin{aligned} & 1 \\ & 3 \end{aligned}$ |


| 27 | Correct figure <br> Let the speed of car be $\mathrm{x} \mathrm{m} /$ minutes <br> In $\triangle A B C$, $\begin{aligned} & \frac{\mathrm{h}}{\mathrm{y}}=\tan 45^{\circ} \\ \Rightarrow & \mathrm{h}=\mathrm{y} \end{aligned}$ <br> In $\triangle A B D$, $\begin{aligned} & \frac{h}{y+12 x}=\tan 30^{0} \\ & \Rightarrow h \sqrt{3}=y+12 x \\ & y \sqrt{3}-y=12 x \end{aligned} \quad \begin{aligned} & y=\frac{12 x}{\sqrt{3}-1}=\frac{12 x(\sqrt{3}+1)}{2} \\ & \\ & \Rightarrow \\ & y=6 x(\sqrt{3}+1) \end{aligned}$ <br> Time taken from $C$ to $B=6(\sqrt{3}+1)$ minutes | $\begin{gathered} \mathbf{1} \\ \mathbf{1} \\ \\ \mathbf{1} / 2 \\ 1 \\ \mathbf{1} / 2 \end{gathered}$ |
| :---: | :---: | :---: |
|  | OR |  |
|  |  <br> Correct figure <br> In $\triangle A B E$, $\begin{aligned} \frac{\mathrm{h}}{\mathrm{x}} & =\tan 30^{\circ} \\ \Rightarrow \quad \mathrm{x} & =\mathrm{h} \sqrt{3} \end{aligned}$ | 1 <br> 1 $\begin{gathered} 1 / 2 \\ 1 \\ 1 / 2 \end{gathered}$ |


|  | In $\triangle B D E$, $\begin{aligned} & \frac{\mathrm{h}+60+60}{\mathrm{x}}=\tan 60^{\circ} \\ & \mathrm{h}+120=x \sqrt{3} \\ & \mathrm{~h}+120=\mathrm{h} \sqrt{3} \times \sqrt{3} \\ & 2 \mathrm{~h}=120 \\ & \mathrm{~h}=60 \end{aligned}$ <br> $\therefore$ height of cloud from surface of water $=(60+60) \mathrm{m}=120 \mathrm{~m}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 28 | Class Interval | Frequency | cf | 1 |
|  |  | 2 | 2 |  |
|  | 100-200 | 5 | 7 |  |
|  | 200-300 | x | $7+\mathrm{x}$ |  |
|  | 300-400 | 12 | 19+x |  |
|  | 400-500 | 17 | $36+\mathrm{x}$ |  |
|  | 500-600 | 20 | 56+x |  |
|  | 600-700 | y | $56+x+y$ |  |
|  | 700-800 | 9 | $65+x+y$ |  |
|  | 800-900 | 7 | $72+x+y$ |  |
|  | 900-1000 | 4 | $76+x+y$ |  |
|  | $$ |  | ..... | 1/2 |
|  | Median $=525 \Rightarrow 500-$ | median clas |  | 1/2 |
|  | $60-80$ is the median class |  |  | 1 |
|  | $\begin{aligned} & \text { Median }=l+\frac{\frac{n}{2}-c f}{f} \times h \\ & \quad \Rightarrow 500+\left(\frac{50-36-\mathrm{x})}{20}\right) \times \end{aligned}$ |  |  | 1 |
|  | $\begin{array}{lc} \Rightarrow & (14-x) \times 5=25 \\ \Rightarrow & \quad x=9 \\ \Rightarrow & \text { from }(1), y=5 \end{array}$ |  |  |  |
|  | OR |  |  |  |



