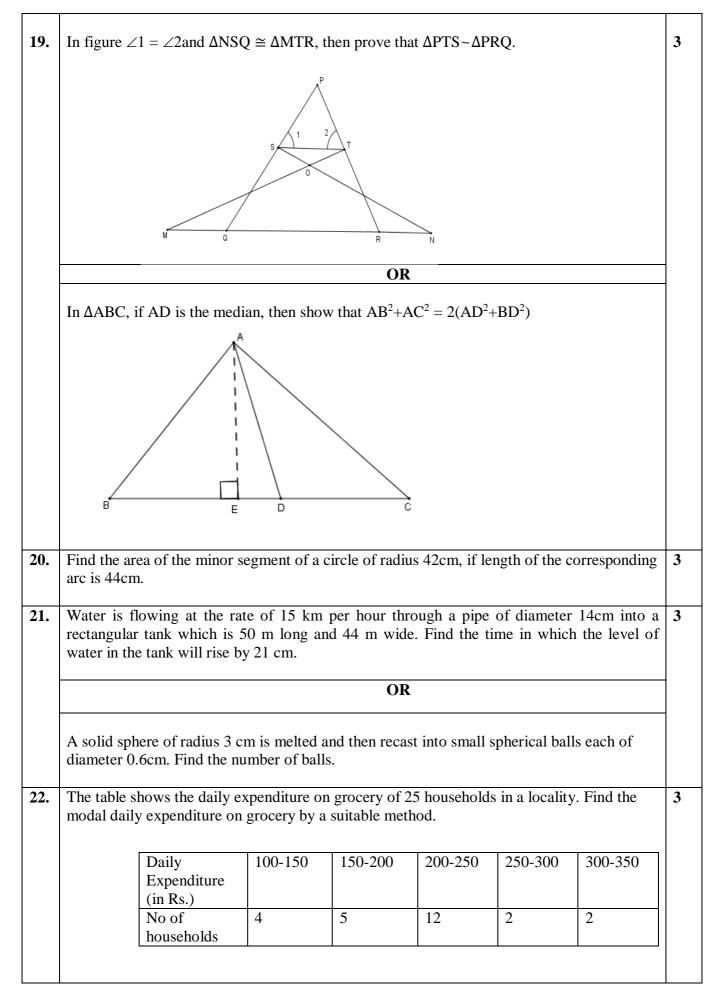

Class X Mathematics Sample Question Paper 2018-19

Time allowed: 3 Hours


Max. Marks: 80

General Instructions:

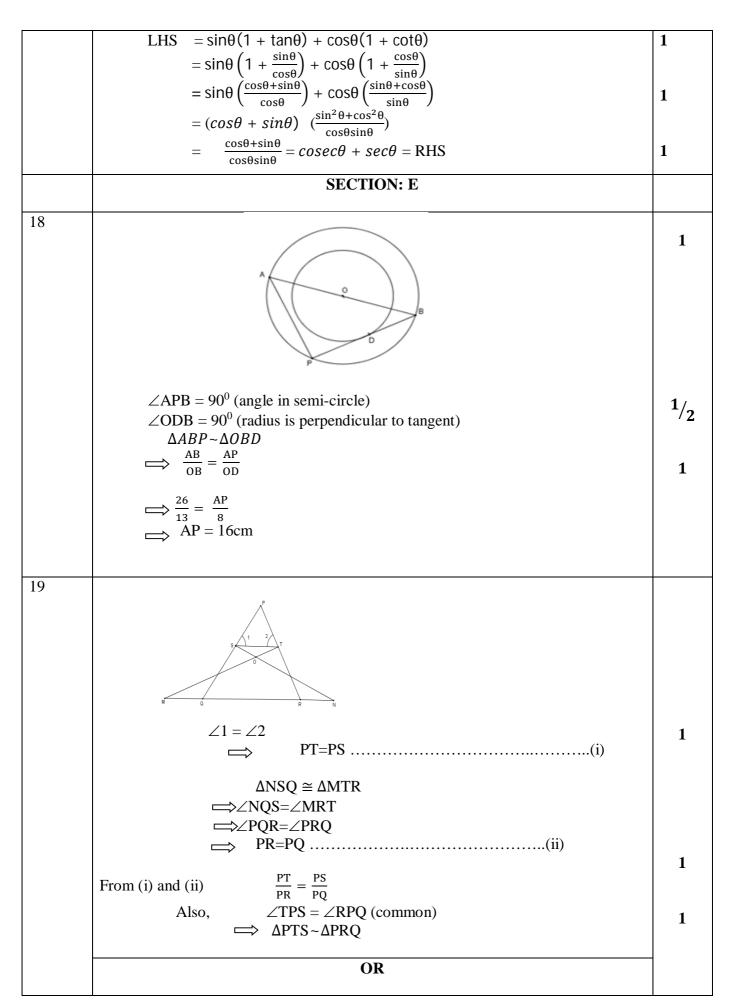
- 1. All the questions are compulsory.
- 2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
- 3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.

	Section-B	
7.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, find the other number.	2
	OR	
	Show that $7 - \sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.	
8.	Find the 20 th term from the last term of the AP 3,8,13,,253	2
	OR	
	If 7 times the 7 th term of an A.P is equal to 11 times its 11 th term, then find its 18 th term.	
9.	Find the coordinates of the point P which divides the join of A(-2,5) and B(3,-5) in the ratio 2:3	2
10.	A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.	2
11.	Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number	2
12.	For what value of p will the following pair of linear equations have infinitely many solutions (p-3)x+3y = p $px+py = 12$	2
	Section-C	
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	3
14.	Find the zeroes of the following polynomial: $5\sqrt{5}x^2+30x+8\sqrt{5}$	3
15.	Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.	3
16.	The points A(1,-2), B(2,3), C (k,2) and D(-4,-3) are the vertices of a parallelogram. Find the value of k.	3
	OR	-
	Find the value of k for which the points (3k-1,k-2), (k,k-7) and (k-1,-k-2) are collinear.	
17.	Prove that $\cot\theta - \tan\theta = \frac{2\cos^2\theta - 1}{\sin\theta\cos\theta}$	3
	$\frac{OR}{Prove that \ sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) = sec\theta + cosec\theta}$	
18.	The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.	3

		S	Section-D			
23.		es 2 hours less for a journey of 30 l. Find the usual speed of the train	-	d by 5 km/h from its	4	
			OR			
	Solve for x	$\frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$, $[a \neq 0, b]$	\neq 0, x \neq 0, x \neq -(a + b)]		
24.	An AP consists of 50 terms of which 3 rd term is 12 and the last term is 106. Find the 29 th term.					
25.	Prove that a of other two	in a right angled triangle square o o sides.	f the hypotenuse is equal to	sum of the squares	4	
26.	Draw a $\triangle ABC$ with sides 6cm, 8cm and 9 cm and then construct a triangle similar to $\triangle ABC$ whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle ABC$.					
27.	coming dire	the top of a vertical observation t ectly towards it. If it takes 12 min how long will the car take to reac	nutes for the angle of depres	ssion to change from	4	
			OR		-	
	is 30^0 and t	of elevation of a cloud from a poin the angle of depression of its shad right of the cloud from the surface	ow from the same point in			
28.	The median of the following data is 525. Find the values of x and y if the total frequency is 100.					
		Class Interval	Frequency			
		0-100	2			
		100-200	5			
		200-300	X			
		300-400	12			
		400-500	17			
		100 500	1,			
		500-600	20			
		500-600 600-700	20 Y			
		600-700				
		600-700 700-800	Y			
		600-700	Y 9			

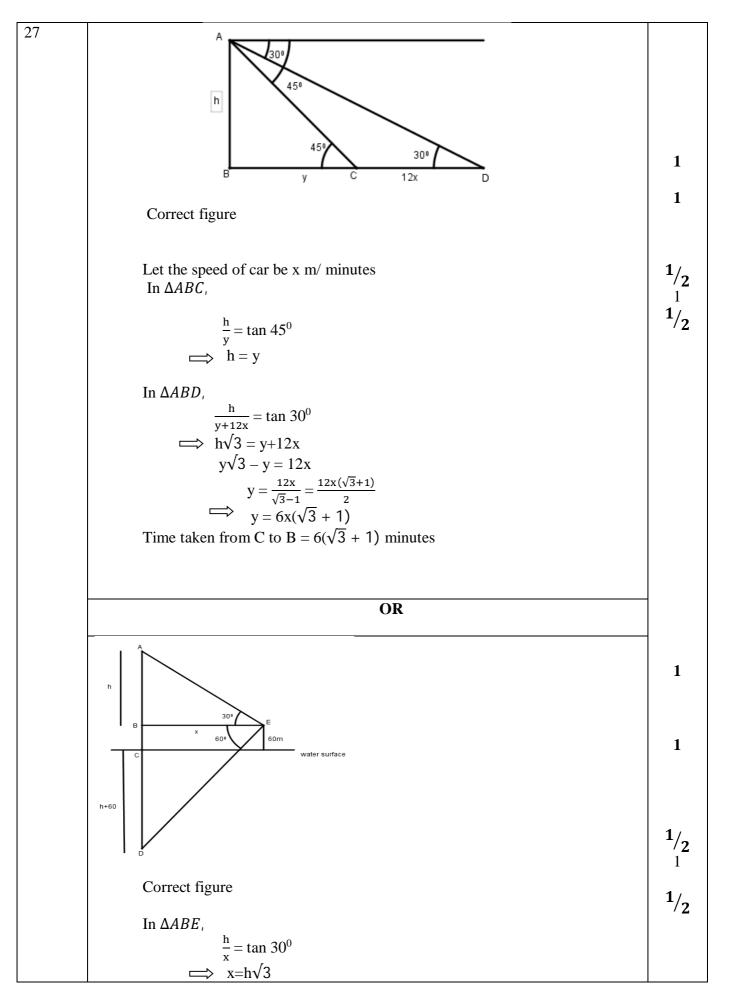
	Marks	Number of students]
	0-10	5	-
	10-20	3	-
	20-30	4	-
	30-40	3	-
	40-50	4	-
	50-60	4	
	60-70	7	
	70-80	9	-
	80-90	7	-
	90-100	8	
Draw less t	han type ogive for the data	above and hence find the media	n.

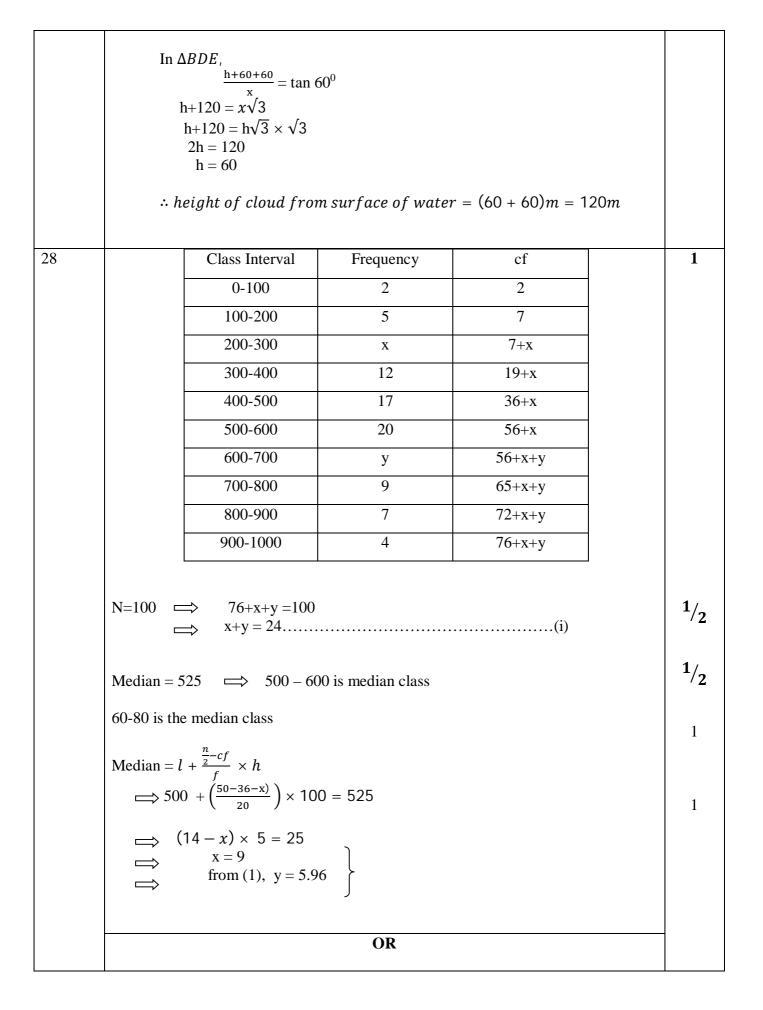
Class: X Mathematics Marking Scheme 2018-19


Time allowed: 3hrs

Maximum Marks: 80

Q No	SECTION A	Marks
1	$(\frac{-5+(-1)}{2},\frac{4+0}{2}) = (\frac{a}{3},2)$ $\frac{a}{3} = \frac{-6}{2} \implies a = -9 \implies \Longrightarrow$	1
2		1/2 1/2
	For roots to be real and equal, $b^2 - 4ac = 0$ $\implies (5k)^2 - 4 \times 1 \times 16 = 0$ $k = \pm \frac{8}{5}$	1/2 1/2
3	$\cot^2\theta - \frac{1}{\sin^2\theta} = \cot^2\theta - \csc^2\theta$ $= -1$	$ \begin{array}{c} 1 \\ 1/2 \\ 1/2 \end{array} $
	OR $\sin\theta = \cos\theta \theta = 45^{\circ}$ $\therefore 2\tan\theta + \cos^2\theta = 2 + \frac{1}{2} = \frac{5}{2}$	
4	$a_1 = 3, a_3 = 7$ $s_3 = \frac{3}{2}(3 + 7) = 15$	1/2 1/2
5	$\frac{AD}{DB} = \frac{AE}{EC} \qquad DE BC$ $\implies \angle ADE = \angle ABC = 48^{0}$	¹ / ₂ ¹ / ₂
6	4 places	1
	SECTION B	
7	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2^{nd}$ number 2^{nd} number = 72	1
	OR	


	Let us assume, to the contrary that $7 - \sqrt{5}$ is irrational	
	$7 - \sqrt{5} = \frac{p}{q}$, Where p & q are co-prime and $q \neq 0$	1
	$=\sqrt{5} = \frac{7q-p}{q}$	1
	$\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a contradiction	1
	Hence $7 - \sqrt{5}$ is irrational	
8	20^{th} term from the end = $l - (n - 1)d$	1/
Ŭ	$= 253-19 \times 5$	$\begin{vmatrix} 1/2\\ 1\\ 1/2 \end{vmatrix}$
	= 158	
		¹ /2
	OR	
	$7a_7 = 11a_{11} \implies 7(a+6d) = 11(a+10d)$	
	$\gamma u \gamma = \Pi u_{11}$ $\gamma (u + \delta u) = \Pi (u + \delta u)$	1
	$\implies a + 17d = 0 \therefore a_{18} = 0$	
		1
0	6-6	
9	$X = \frac{6-6}{5} = 0$	1
	$Y = \frac{-10+15}{5} = 1$	1
	5 5	1
10	Probability of either a red card or a queen	1
10		
	$=\frac{26+2}{52}=\frac{28}{52}$	1
	P(neither red car nor a queen) = $1 - \frac{28}{r_2}$	-
	P(neither red car nor a queen) = $1 - \frac{28}{52}$ = $\frac{24}{52}$ or $\frac{7}{13}$	
	$-\frac{52}{52}$ $\frac{67}{13}$	
11	Total number of outcomes 26	1
11	Total number of outcomes = 36 Equation (1.2) (2.1) (1.2) (2.1) (1.5) (5.1) i.e. 6	1
	Favourable outcomes are $(1,2)$, $(2,1)$, $(1,3)$, $(3,1)$, $(1,5)$, $(5,1)$ i.e. 6	1
	Required probability $=\frac{6}{36}$ or $\frac{1}{6}$	
12	For infinitely many solutions	
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{12}$	· 4
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{-12}$ $\implies p^2 - 3p = 3p \qquad \text{or} \qquad 12 \times 3 = p^2$ $\implies p^2 - 6p = 0 \qquad \text{or} \qquad p = \pm 6$	1
	$\implies p^2 - 6p = 0 \qquad \text{or} \qquad p = \pm 6$	
	p = 0,6	
	$p = 0,0$ $\implies p = 6$	
	SECTION: C	
10		
13	By Euclid's Division lemma	6 ×
	$726 = 275 \times 2 + 176$	1/2 =
	$275 = 176 \times 1 + 99$	$\frac{1}{2} = \frac{3}{3}$
	$176 = 99 \times 1 + 77$	
	$99 = 77 \times 1 + 22$	
	$77=22 \times 3 + 11$	
	$22 = 11 \times 2 + 0$	
	HCF = 11	


14	$5\sqrt{5}x^2+30x+8\sqrt{5}$	1
17	$= 5\sqrt{5x^2+30x+8\sqrt{5}}$ = 5\sqrt{5x^2+20x+10x+8\sqrt{5}}	1
	$= 5x(\sqrt{5}x + 4) + 2\sqrt{5}(\sqrt{5}x + 4)$	
	$= (\sqrt{5}x + 4) (5x + 2\sqrt{5})$	
	Zeroes are $\frac{-4}{\sqrt{5}} = \frac{-4\sqrt{5}}{5}$ and $\frac{-2\sqrt{5}}{5}$	1
	$\sum \cos a = \sqrt{5} - \frac{1}{5} = \frac{1}{5}$	1
15	Let the speed of car at A be x km/h	1
	And the speed of car at B be y km/h	
	Case 1 $8x-8y = 80$	
	x-y = 10	
	Case 2 $\frac{4}{3}x + \frac{4}{3}y = 80$	1
	x+y = 60 on solving $x=35$ and $y=25$	
	Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.	1
16		$1^{1}/_{2}$
	(-4,-3) D C (K2)	
	AB (12) B (2.3)	
	Diagonals of parallelogram bisect each other	
	\implies midpoint of AC = midpoint of BD	¹ / ₂
	$\implies \qquad (\frac{1+k}{2}, \frac{-2+2}{2}) = (\frac{-4+2}{2}, \frac{-3+3}{2})$	1
		1
	$\implies \qquad \frac{1+k}{2} = \frac{-2}{2}$ $\implies \qquad k = -3$	
	OR	
	For collinearity of the points, area of the triangle formed by given Points is zero.	
	$\implies \frac{1}{2} \{(3k-1)(k-7+k+2) + k(-k-2-k+2) + (k-1)(k-2-k+2) + (k-1)(k-2-k+2) \}$	1
	$\{7\} = 0$	-
	$\implies \{(3k-1)(2k-5) - 2k^2 + 5k - 5\} = 0$	1
	$\implies \qquad 4k^2 - 12k = 0$	1
	\implies $k = 0, 3$	
17	LHS = $\cot\theta$ – $\tan\theta$	1
	$= \frac{\cos\theta}{\cos\theta} - \frac{\sin\theta}{\sin\theta}$	
	$ \begin{array}{cccc} & & & \\ $	¹ / ₂
	$=$ $\frac{1}{\sin\theta\cos\theta}$	1
	$=\frac{\cos^2\theta-1+\cos^2\theta}{\sin\theta\cos\theta}$	1.
	$=\frac{2\cos^2\theta-1}{\sin\theta\cos\theta}=RHS$	¹ / ₂
	sinθ cosθ	
	OR	

	AD is median, So BD=DC.	1
	$ \begin{array}{c} AB^2 = AE^2 + BE^2 \\ AC^2 = AE^2 + EC^2 \end{array} $	1
	Adding both, $AB^{2}+AC^{2} = 2AE^{2}+BE^{2}+CE^{2}$ $= 2(AD^{2}-ED^{2})+(BD-ED)^{2}+(DC+ED)^{2}$ $= 2AD^{2}-2ED^{2}+BD^{2}+ED^{2}-2BD.ED+DC^{2}+ED^{2}+2CD.ED$ $= 2AD^{2}+BD^{2}+CD^{2}$ $= 2(AD^{2}+BD^{2})$	1
20	$r = 42cm$ $\frac{2\pi r\theta}{360^{\circ}} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^{0}$	1
	Area of minor segment = area of sector – area of corresponding triangle $= \frac{\pi r^2 \theta}{360^\circ} - \frac{\sqrt{3}}{4} r^2$ $= r^2 [\frac{22}{7} \times \frac{60}{360} - \frac{\sqrt{3}}{4}]$	¹ / ₂
	$= 42 \times 42 \left[\frac{11}{21} - \frac{\sqrt{3}}{4} \right]$ = 42 \times 42 \times \left[\frac{44-21\sqrt{3}}{84} \right] = 21 \left(44 - 21\sqrt{3} \right) \text{ cm}^2	1/2 1
21	Volume of water flowing through pipe in 1 hour $= \frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100}$ $= 231 \text{ m}^{3}$	1
	Volume of rectangular tank = $50 \times 44 \times \frac{21}{100}$	1
	$= 22 \times 21 \text{ m}^{3}$ Time taken to flow 231 m ³ of water = 1 hours \therefore Time taken to flow 22 × 21 m ³ of water = $\frac{1}{231}$ × 22 × 21 = 2 hours	1
	OR	
	Number of balls = $\frac{\text{Volume of solid sphere}}{\text{Volume of 1 spherical ball}}$	1
	$=\frac{\frac{4}{3}\times\pi\times3\times3\times3}{\frac{4}{3}\times\pi\times0.3\times0.3\times0.3}$ $=1000$	1
		1

22	200-250 is the modal class	1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1
	$= 200 + \frac{12-5}{24-5-2} \times 50$	$1/2 \\ 1/2$
	= 200+20.59 = Rs. 220.59	
	Section D	
23	Let the usual speed of the train be x km/h	2
23	$\frac{300}{x} - \frac{300}{x+5} = 2$	-
	$\implies \begin{array}{c} x^2 + 5x - 750 = 0 \\ (x + 30)(x - 25) = 0 \end{array}$	1
	$\implies x = -30,25$ $\therefore \text{ Usual Speed of the train} = 25 \text{ km/h}$	1
	OR	
	$\frac{1}{(a+b+x)} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$ $\implies \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$	1 1
		1
	(x+a)(x+b) = 0 $(x+a)(x+b) = -a, -b$	1
24	$n=50, a_{3} = 12 \text{ and } a_{50} = 106$ $a+2d = 12$ $a+49d = 106$ on solving, d=2 and a= 8	$\frac{1}{2}$ 1
	$a_{29} = a + 28d$ = $8 + 28 \times 2 = 64$	1/2 1
25	Correct given, To prove, figure and construction	$\frac{1/2}{\times 4} = 2$
	Correct proof	2
26	Correct construction of ΔABC Correct construction of similar triangle	1 3

		Marks	Number of students	cf		
		0-10	5			
	10-20 3 8 20-30 4 12 30-40 3 15					
		50-60	4	22		
		60-70	7	29		
		70-80	9	38		
		80-90	7	45		
		90-100	8	53		
	Correct table Drawing corr Median=64				1 2 1	
29	29 $r_1 = 15 \text{ cm}, r_2 = 5 \text{ cm}$ h = 24 cm $l = \sqrt{h^2 + (r_1 - r_2)^2}$ $= \sqrt{24^2 + 10^2} = 26 \text{ cm}$				1	
	Curved surface area of bucket = $\pi (r_1 + r_2)l$ = $\frac{22}{7} \times (15 + 5) \times 26$ = $\frac{22 \times 20 \times 26}{7}$					
	$= \frac{7}{11440}$ = $\frac{11440}{7}$ cm ² or 1634.3cm ²					
30	$\frac{1}{\cos\theta}$ + 1+sin	$\frac{1}{1 + tan\theta} = p$ $\frac{\sin\theta}{\cos\theta} = p$ $\frac{\sin\theta}{1 - \sin^2\theta}$ $\frac{(1 + \sin\theta)^2}{(1 + \sin^2\theta} + 2\sin^2\theta}$	$(1 - \sin^2 \theta)$ $\theta = p^2 - p^2 \sin^2 \theta$		1	
	$(1 + p^2) sin^2\theta + 2sin\theta + (1 - p^2) = 0$ $D = 4 - 4(1+p^2)(1-p^2)$ $= 4 - 4(1-p^4) = 4p^4$					
			$\frac{\overline{4p^4}}{p^2)} = \frac{-1\pm p^2}{(1+p^2)} = \frac{p^2-1}{p^2+1}, -1$		1/2 1	
	÷.	$Cosec \ \theta = \frac{p^2 + 1}{p^2 - 1} \ , -$	-1			